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thin rods, is solved. The analysis yields a set of stability
criteria involving the system parameters such as the body
moments of inertia, the length and mass distribution of the
elastic rods, the lowest natural frequencies of the rods, and the
satellite spin velocity. The power of the method is illustrated
by the relative ease with which closed-form stability criteria
are derived and by the amount of information which can be
extracted from their ready physical interpretation. In par-
ticular, the analysis shows that, for stability, the spinning mo-
tion is to be imparted about the axis of maximum moment of
inertia. This is the well-known "greatest moment of inertia"
requirement. Moreover, the initial spin velocity flc should
not be merely lower than the first natural frequencies Aiu and
Air associated with the transverse vibration of the rods (as
the frequency of simple harmonic excitation of the rods
should be if resonance is to be prevented), but the ratios
Os/AiM and fi./Ai,, are dictated by the system parameters.
Of course, for very stiff rods the natural frequencies AI« and
AIV may be sufficiently high that the satisfaction of criteria
(40) is ensured.
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Buckling of a Thin Annular Plate under Uniform Compression
SAURINDRANATH MAJUMDAR*

AiResearch Manufacturing Company, Torrance, Calif.

The buckling of a circular annular plate with the outer edge clamped, the inner edge free,
and loaded with uniform radial compressive force applied at the outside edge has been studied
both theoretically and experimentally. Solution to the differential equation for buckling
has been sought in the form w = An(r) cosrifl, n = 0,1,2, . . . .The differential equation has been
solved exactly for n = 0 and n = 1 and approximately for higher values of n as well as for n =
0 and n = 1. The solutions indicate that for small ratios of inner to outer radius the plate
buckles into a radially symmetric mode. When the ratio of the inner to outer radius exceeds
a certain value, the minimum buckling load corresponds to buckling modes with waves along
the circumference. The number of waves depends on the ratio of the inner and the outer
radii. Tests were carried out with thin aluminum plates, and the results corroborate the
theoretical predictions.

Nomenclature

a = outer radius
b = inner radius
D = bending stiffness of the plate = Eh*/[l2(l - v*)]
E = modulus of elasticity of the plate
h = thickness of plate
T = temperature rise above ambient
V = potential energy
w = transverse displacement perturbation
v = Poisson's ratio
a A, &s = coefficient of thermal expansion of aluminum and steel,

respectively
dc = theoretical rise of temperature above ambient for

buckling
No = radial compressive force at the outer edge
Nocr = radial compressive force at the outer edge at buckling
Nr = radial stress resultant
Ne = circumferential stress resultant
Nre — shear stress resultant
To = experimentally observed rise of temperature above

ambient for buckling
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Introduction

THE elastic stability of a thin circular plate was studied
first by Bryan1 in 1891. He showed that the minimum

buckling load for a circular plate without a central hole
corresponds to a radially symmetric buckling mode. The
buckling of a circular annular plate subjected to shearing
forces distributed along the edges was first studied by Dean.2
Since then, many researchers have investigated the buckling
of a circular annular plate subjected to various loading
conditions. Willers3 considered the case of a plate subjected
to bending moment caused by initial stresses. Some of these
cases have been extended to plates with varying thickness.4"7

The buckling of a thin circular annular plate subjected to
equal compressive loadings at both the edges has been
studied by Olsson,8 Schubert,9 and Yamaki.10 Olsson and
Schubert considered only radially symmetric buckling modes.
Yamaki showed that, for some cases, a radially symmetric
buckling mode does not correspond to the lowest buckling
load.

The buckling of a circular annular plate clamped at the
outer edge with the inner edge free and subjected to uniform
radial compression at the outer edge was first studied by
Meissner.11 He assumed a radially symmetric buckling
mode and obtained a relationship between the buckling
load and the ratio between the inner and the outer radii.
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Fig. 1 Comparison between exact and approximate
buckling loads.

The present paper considers the same problem but allows in
the deflection pattern the possibility of various number of
waves around the circumference. In particular, the differ-
ential equation of buckling for a single wave around the cir-
cumference has been solved exactly. Solutions for buckling
with more than one wave around the circumference have
been obtained using an approximate method. The results
indicate that, if the ratio of the inner and the outer radii
exceeds a certain minimum value, the radially symmetric
buckling mode does not correspond to the lowest buckling
load. The number of waves around the circumference
which corresponds to the lowest buckling load, together with
the lowest buckling load, increases with increasing ratios of
the inner and the outer radii. Tests were conducted using
thin aluminum plates, and the results corroborate the theo-
retical predictions.

Theory
The differential equation of buckling for a perfect circular

annular plate of uniform thickness loaded radially at its
edges is

-Nr¥£-N$(*^ + ̂ ¥£\=Q (1)dr2

where
dr

dr r2 d02 X

2 r dr r2 d
and JVr and A^» are the prebuckling membrane stresses.

For the case under consideration, the prebuckling mem-
brane stresses are given by

= 0

(2)

H)

Substituting the expressions for Nr and Ne from Eq. (2) into
Eq. (1), the following equation is obtained:

V*u> + XK62)-1 (2X/r2)(dVdr2) (3)

where
X =

The boundary conditions considered in the present case are

w = 0 at r = a (4)

= 0 at r = a (5)

at r = b (6)

__ I ___ I _.

dr \ dr2 r
1

dr r2 d<92/
— v c

~r~~ d0 \r at r = b (7)

Equations (3-7) pose an eigenvalue problem. The critical
load obtained by solving these equations is usually expressed
as

(8)

where k is related to the eigenvalue X by the following equa-
tion :

k = X[(a2/62) - 1]

Solutions of Eq. (3) have been sought in the form

w = An(r) cosnd for n = 0,1,2, . . . (9)

Substituting the expression of w from Eq. (9) into Eq. (3)
and using the transformation Z = X1/2(r/6),

d*Ari
F Z dZ*
2n2 + X
Z3 U dZ ^

An = 0

_ dZ* ^
- X - 4)

forn = 0,1,2, . . . (10)

The case n — 0 corresponds to the radially symmetric buck-
ling, and Eq. (10) reduces to

dZ* Z dZ* "J dZ

+ 11z_r " 0 (H)

where \f/ = dAQ/dZ. The three boundary conditions that
Eq. (11) have to satisfy are Eqs. (5-7), which reduce to the
following equations in terms of the variables \[/ and Z:

t = 0 at Z = \l'2(a/b) (12)

(df/dZ) + (v/Z)$ = 0 atZ = X1/2 (13)
(rf/rfZ)[(d^/rfZ) + Z~^] = 0 atZ = X1/2 (14)

A solution of Eq. (11) satisfying boundary condition (14) is

* = AJP(Z) + BJ.P(Z) (15)
where p = (X + 1)1/2, Jp(Z) and J-P(Z) are Bessels functions
of the first kind, and A and B are arbitrary constants.

The imposition of boundary conditions (12) and (13) yield
the following determinental equation for X:

'-H) = o
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A plot of the result is given by Timoshenko12 and is repro-
duced in Fig. 1.

For the case n = I involving one wave around the circum-
ference, Eq. (10) gives the following:

dZ* Z dZ*
3 + X

J dZ2

Using the transformations AI = Z<t> and \l/ = d<t>/dZ, Eq.
(16) can be reduced to

#+ 1 - p2l C——£_ \ j, = —
Z2 J y Z3 (17)

where p2 = X + 4 and C is an arbitrary constant. The
general solution of Eq. (17) is

$ = Z~i[AJp(Z) + BJ-P(Z) + CS-i.p(Z)] (18)

where

2 sii /- X

and A,J5 are arbitrary constants. Writing \I/(Z) in terms of
Ai(Z) in Eq. (18), the following is obtained:

Z(dAi/dZ) - Ai = Z[AJP(Z) + BJ_P(Z) + CS-llp(Z) ] (19)

Boundary conditions (4-7), transformed into the new vari-
ables, can be written as

A! = 0 at Z = X1/2(a/6) (20)
dAi/dZ = 0 at Z = X1/2(a/6) (21)

|-t [z ̂  - A,

d2Ai 3 - v dAi
]-

dZ2 dZ

0 at Z = X1/2 (22)

4^.-

at Z = X1/2 (23)

Subjecting the general solution (19) to the boundary condi-
tions (20-23) leads to the following equations:

AJp[\^(a/b)] + BJ-p[\"*(a/b)] = 0

(7 = 0

(24)

= 0 (25)

(26)

For nontrivial solutions of A and 5, the following equation
must be satisfied:

,(X1/2 a/b)
+ v ~ p)/p(X1/2) + X^Vp-iCX1'2)

A plot of the results is shown in Fig. 1.

Approximate Solution

Solutions for cases involving n > 1 were obtained by the
Rayleigh-Ritz method. A deflection pattern satisfying the
displacement boundary conditions at the outer edge is

w = Wo[l - (r2/a2)]2 cosnfl n = 0,1,2, . . . (27)

This expression for w was substituted in the expression for

100

90 -
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Q

Fig. 2 Buckling load for various wave numbers.

the total potential energy of the system given by

1 /*° C2ir (*r /cHc\2 , Ne /dw^V = — I I \Nr [ ̂ - ] + —- \^-2 J b Jo [ \or/ r2 \dd,

i i [ I v w \
I t ^-' f - 5,. "T r2 S8*/

2(i - ,) — (I ̂  + I ^
^ ' >\«2 V « >\^, ' ^2 >v

!_
~22(1 - ,) - (28)

where A^r and No are given by Eq. (2). The total potential
energy was then minimized with respect to WQ to give the
buckling load. A comparison between the exact and the
approximate solutions for the two cases corresponding to
n = 0 and n = I is shown in Fig. 1. In general, the differ-
ence between the exact and the approximate solutions are
small. In the case of n =1 , the approximate solution gives
exaggerated values of the buckling load for very small 6/a
ratios. The approximate solutions for higher values of n are
shown in Fig. 2. The approximate solutions for n > 1 most
likely provide exaggerated values of the buckling loads for
very small b/a ratios. However, for values of b/a in this
range, the lowest buckling load is given by n = 0. In order
to determine whether the approximate solutions provide
reasonable estimates of the minimum buckling loads for large
b/a ratios, the following analogy is noted. An axially loaded

a/b)
X1/2 /.̂

long and narrow rectangular plate with one of its long edges
clamped and the other edge free has a buckling load given by

NXCT = 13.1 (D/d*)
where d is the width of the plate. In the case of an annular
plate, when b/a approaches unity, the compressed ring should
behave like the plate just described. Hence, if a constant
k' is defined for the annular plate such that

AT,cr(r = o) = k'[D/(a - 6)2]
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Fig. 3 Variation of modified buckling param-
eter k' with b/a.
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then k' should approach a finite limit of 13.1 as b/a approaches
unity. It can be shown that

k' = k[(a- &)/(« + &)][! + (&V«2)]

A plot of k' vs b/a for values of b/a up to 0.9 and with n as a
parameter is shown in Fig. 3. It may be observed that the
value of k' corresponding to the minimum buckling load
varies very little throughout the entire range of b/a con-
sidered. The behavior of k' thus indicates that the one-
term Rayleigh-Ritz procedure provides a reasonable estimate
of the minimum buckling load for at least up to values of
b/a = 0.9 and n = 10. It should be remembered, however,
that for values of b infinitesimally close to a the assumptions
of thin-plate theory are no longer valid, and the present
analysis is incapable of handling such situations.

Test Results

Tests were carried out using 0.041-in.-thick 2024 aluminum
plates clamped between two 0.5-in.-thick steel rings by means
of 12 0.5-in. <t> high tensile steel bolts, as shown in Fig. 4. The
inner diameter of the steel ring was 8 in. and the outer diam-
eter 10 in. The various plate geometries used in the tests
are given in Table 1.

Loading was accomplished by heating the whole assembly,

whereupon the steel rings put a uniformly distributed radial
compressive load on the aluminum plate because of the differ-
ence in the coefficients of thermal expansion. The effects
of the elasticity of the steel rings on the stress distribution in
the plates and on the assumption of clamped edge condition
were estimated to be very small.

The tests were carried out in two parts. Details of these
tests may be obtained from Ref. 13.

Test Series A

The assembly was heated inside a Missimers environment
chamber, where the temperature of the specimens could be
controlled to within ±1°F. To keep the temperature gradi-
ent in the specimen to a minimum, a soaking period of about
1 hr was allowed for each increment in temperature. Tem-
perature-compensated radial and circumferential strain
gages were attached on both sides of the plate. The differ-
ence in the strain gage readings on two sides of the plate gives
a direct measure of the bending and consequently the trans-
verse deflection of the plate. The plates start to bend from
the beginning of loading because of the presence of initial
imperfections. A Southwell type of plot was, therefore,
used to obtain the buckling temperature Tc as shown in Fig.
5. 6C in the figure represents the theoretically computed
buckling temperature.

The buckling parameter k is related to the buckling tem-
perature Tc by the following equations;

k = 12(1 + v)

k = 12(1 - V*.

*A - as]Tc

a2 - 62

for solid plates

for annular plates
a2(l - v) + 62(1 +

The test points are shown in Fig. 2.

Test Series B
To obtain the number of waves along the circumference

of the plates during buckling, a direct measurement of de-

Table 1 Geometry of test specimens

b, in. b/a

Fig. 4 Test specimen.

0
0.5
2
2.5
3

0
0.125
0.5
0.625
0.75
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Fig. 5 Typical Southwell plot for obtaining buckling
temperature.

flection was made using an inductance pickup. The plate
clamped by the rings was placed on a turntable that could
be rotated, and the pickup was attached by means of an arm
to a graduated optical bench (Fig. 6). The assembly was
heated by means of a 1000-w quartz iodine photographic
lamp connected in series with a rheostat. At every step of
loading, the assembly was given enough time to reach equilib-
rium temperature. The plate was rotated with the pickup
placed at a fixed radius, and the output from the pickup was
plotted directly on an XY plotter. Even though the radial
temperature distribution in the plate was somewhat nonl
uniform, it affected only the mode shape along the radia-
direction and did not alter the number of waves in the cir-
cumferential direction. Figures 7-11 show the circumfer-

Fig. 6 Test setup for series B.

ential variation of the deflection of various plates at a par-
ticular radius for each increment of loading.

Discussion

The test data (Fig. 2) in general indicate slightly higher
buckling loads than the theoretically computed values. This
is because a certain amount of slipping between the aluminum
plate and the steel rings cannot be avoided, particularly
at the higher buckling loads. As a result, the experimentally

-^0.03

£0.02

Fig. 7 Displacement at various •
circumferential stations with tern- 5

Q_perature. g
-0.01

1o

8.3°C

b = 0 "

15° C

8°C

90° 180°
Angular Position Of Pickup

270° 360°

Fig. 8 Displacement at various
circumferential stations with tem-

perature.

0.04

0.03

0.02

0.01

0C= 8 .6°C
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90° 180°
Angular Position Of Pickup

270°

16°C

8°C

Room Temp.

360°
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Fig. 9 Displacement at various
circumferential stations with tem-

perature.

360°
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Fig. 10 Displacement at various
Circumferential stations with tem-

perature.
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0.04

Fig. 11 Displacement at various
circumferential stations with tem-

perature.

270° 360°
Angular Position Of Pickup
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observed buckling temperatures are slightly greater than
what would be observed had there been no slipping.

The test data in general support the theoretical predic-
tions. For small b/a ratios, the buckling mode observed is
radially symmetric. For b/a > 0.5, the experimentally ob-
served buckling modes contain waves around the circumfer-
ence, and the number of waves and the buckling load increase
with increasing b/a.

In each test, during the initial stages of loading the plate
deforms in the primary mode of imperfection present, which
is usually radially symmetric. As the load approaches the
buckling value, however, the plate begins to develop circum-
ferential waves, depending on the particular b/a ratio. This
is to be expected, because the plate has a stable postbuckling
behavior. For large b/a ratios, the buckling curves corre-
sponding to various values of n tend to group together; as
a result, the initial imperfection may influence the buckling
mode.

It is interesting to compare the present case with the case 3
studied by Yamaki,10 who analyzed a plate with similar dis-
placement boundary conditions but loaded with equal pressure
at both the boundaries. Yamaki showed that the mini-
mum buckling load always occurs in a radially symmetric
mode. The stress-free internal boundary condition thus
changes the buckling behavior of the plate.

Conclusions

Experimental and theoretical work have been carried out
on the problem of buckling of an annular plate subjected to
uniform pressure on the clamped outer edge with the inner
edge free. It has been shown that for this type of loading
the buckling mode depends on the b/a ratio. This is in con-
trast to the situation where both the inner and the outer
edges are subjected to equal pressure, in which case the
buckling mode is radially symmetric for all b/a ratios.

The buckling stresses for different wave numbers are very
close together for large b/a ratios. The mode in which the
plate will buckle will, therefore, be influenced by the initial

imperfections. However, since the plate has stable post-
buckling behavior, the load at which the plate buckles will
not be very sensitive to the initial imperfections.
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